Selasa, 08 Desember 2009

riwyt cnt

cnt adlh riwyt yg tiada dikthui akirx.
cnt sllu d di jw.
kw yag sllu q pja.
kni hilng dimlk org.

hruskh q mti.
pengorbnn yg tiada tara tlh sia.
q hx bs berthn dlm kegundhan.
n mexyng u wlau kw tk pernh tw.




selamat tinggal ms lalu

Kututup hatiku untuk namamu
Walau tangismu untukku
Biarku sendiri tanpamu lagi
Walaupun sepi kurasakan tanpa kau disini

Kuingin kau jauh dari mataku
Agar tiada rasa benci
Kau pergi dariku tak usah kembali
Mungkin aku telah berdua untuk selamanya

Selamat tinggal masa lalu aku kan melangkah
Maafkanlah segala yang pernah kulakukan padamu

Dengarlah dengarlah kau yang disana
Ku kan melupakan tentangmu
Lihatlah lihatlah aku disini
Kini aku telah berdua untuk selamanya

Selamat tinggal masa lalu aku kan melangkah
Maafkanlah segala yang pernah kulakukan padamu

Selamat tinggal masa lalu aku kan melangkah
Maafkanlah segala yang pernah kulakukan padamu

Selamat tinggal masa lalu aku kan melangkah
Maafkanlah segala yang pernah kulakukan padamu

Rabu, 02 Desember 2009

kerispatih


Kerispatih

Kerispatih
Laki-Laki
Jakarta, 2005


Biografi :

Kerispatih adalah sebuah grup musik Indonesia bentukan tahun 2005. Personel mereka terdiri dari Badai, Anton, Sammy, Arief dan Andika.

Album pertama Kerispatih bertajuk Kejujuran Hati dirilis pada 2005. Di mana dalam album ini memiliki single Kejujuran Hati, Cinta Putih dan Lagu Rindu.

Pada 2007, Kerispatih kembali merilis album berjudul Kenyataan Perasaan, dan singel hitnya Mengenangmu, Tapi Bukan Aku, Sepanjang Usia dan Untuk Pertama Kali. Keseluruhan single album tersebut dirilis secara terpisah.

Selain itu, Kerispatih juga mendapat kesempatan untuk menyanyikan lagu ciptaan Presiden Susilo Bambang Yudhoyono. Lagu berjudul Hening itu, direkam dalam album Rinduku Padamu miliki Presiden SBY.

Kembali, Kerispatih meluncurkan album ketiganya dengan tajuk TAK LEKANG OLEH WAKTU pada 21 Mei 2008. Hebatnya, dalam waktu sebentar, 25 ribu kopi telah terjual, akhirnya album ini pun dilakukan kopi ulang.

Album yang menjagokan lagu Bila Rasaku Ini Rasamu dan Demi Cinta ini berisi 11 lagu dengan menghadirkan Syahrini sebagai bintang tamu. Yang istimewa di album ini terdapat satu judul lagu, Kawanku ciptaan Presiden Bambang Susilo Yudhoyono.

Jumat, 20 November 2009

Konflik Israel dan Palestina

Konflik Israel dan Palestina



Israel, Tepi Barat, dan Jalur Gaza berada di pusat konflik Israel-Palestina.
Konflik Israel-Palestina, bagian dari konflik Arab-Israel yang lebih luas, adalah konflik yang berlanjut antara bangsa Israel dan bangsa Palestina.
Konflik Israel-Palestina ini bukanlah sebuah konflik dua sisi yang sederhana, seolah-olah seluruh bangsa Israel (atau bahkan seluruh orang Yahudi yang berkebangsaan Israel) memiliki satu pandangan yang sama, sementara seluruh bangsa Palestina memiliki pandangan yang sebaliknya. Di kedua komunitas terdapat orang-orang dan kelompok-kelompok yang menganjurkan penyingkiran teritorial total dari komunitas yang lainnya, sebagian menganjurkan solusi dua negara, dan sebagian lagi menganjurkan solusi dua bangsa dengan satu negara sekular yang mencakup wilayah Israel masa kini, Jalur Gaza, Tepi Barat, dan Yerusalem Timur.


Sejak Persetujuan Oslo, Pemerintah Israel dan Otoritas Nasional Palestina secara resmi telah bertekad untuk akhirnya tiba pada solusi dua negara. Masalah-masalah utama yang tidak terpecahkan di antara kedua pemerintah ini adalah:
Masalah pengungsi muncul sebagai akibat dari perang Arab-Israel 1948. Masalah Tepi Barat, Jalur Gaza, dan Yerusalem Timur muncul sebagai akibat dari Perang Enam Hari pada 1967.
Selama ini telah terjadi konflik yang penuh kekerasan, dengan berbagai tingkat intensitasnya dan konflik gagasan, tujuan, dan prinsip-prinsip yang berada di balik semuanya. Pada kedua belah pihak, pada berbagai kesempatan, telah muncul kelompok-kelompok yang berbeda pendapat dalam berbagai tingkatannya tentang penganjuran atau penggunaan taktik-taktik kekerasan, anti kekerasan yang aktif, dll. Ada pula orang-orang yang bersimpati dengan tujuan-tujuan dari pihak yang satu atau yang lainnya, walaupun itu tidak berarti mereka merangkul taktik-taktik yang telah digunakan demi tujuan-tujuan itu. Lebih jauh, ada pula orang-orang yang merangkul sekurang-kurangnya sebagian dari tujuan-tujuan dari kedua belah pihak. Dan menyebutkan "kedua belah" pihak itu sendiri adalah suatu penyederhanaan: Al-Fatah dan Hamas saling berbeda pendapat tentang tujuan-tujuan bagi bangsa Palestina. Hal yang sama dapat digunakan tentang berbagai partai politik Israel, meskipun misalnya pembicaraannya dibatasi pada partai-partai Yahudi Israel.
Mengingat pembatasan-pembatasan di atas, setiap gambaran ringkas mengenai sifat konflik ini pasti akan sangat sepihak. Itu berarti, mereka yang menganjurkan perlawanan Palestina dengan kekerasan biasanya membenarkannya sebagai perlawanan yang sah terhadap pendudukan militer oleh bangsa Israel yang tidak sah atas Palestina, yang didukung oleh bantuan militer dan diplomatik oleh A.S. Banyak yang cenderung memandang perlawanan bersenjata Palestina di lingkungan Tepi Barat dan Jalur Gaza sebagai hak yang diberikan oleh persetujuan Jenewa dan Piagam PBB. Sebagian memperluas pandangan ini untuk membenarkan serangan-serangan, yang seringkali dilakukan terhadap warga sipil, di wilayah Israel itu sendiri.

PLO
Al-Fatah
Hamas
JIP
Plo emblem.png
Fateh-logo.jpg
HamasLogo.jpg
PIJ emblem.png
Lambang-lambang dari organisasi-organisasi utama Palestina termasuk peta wilayah Israel sekarang, Tepi Barat dan Jalur Gaza. (Sejumlah besar penduduk Palestina maupun Israel sama-sama mengklaim hak atas seluruh wilayah ini).
Demikian pula, mereka yang bersimpati dengan aksi militer Israel dan langkah-langkah Israel lainnya dalam menghadapi bangsa Palestina cenderung memandang tindakan-tindakan ini sebagai pembelaan diri yang sah oleh bangsa Israsel dalam melawan kampanye terorisme yang dilakukan oleh kelompok-kelompok Palestina seperti Hamas, Jihad Islami, Al Fatah dan lain-lainnya, dan didukung oleh negara-negara lain di wilayah itu dan oleh kebanyakan bangsa Palestina, sekurang-kurangnya oleh warga Palestina yang bukan merupakan warga negara Israel. Banyak yang cenderung percaya bahwa Israel perlu menguasai sebagian atau seluruh wilayah ini demi keamanannya sendiri. Pandangan-pandangan yang sangat berbeda mengenai keabsahan dari tindakan-tindakan dari masing-masing pihak di dalam konflik ini telah menjadi penghalang utama bagi pemecahannya.


Sebuah poster gerakan perdamaian: Bendera Israel dan bendera Palestina dan kata-kata Salaam dalam bahasa Arab dan Shalom dalam bahasa Ibrani. Gambar-gambar serupa telah digunakan oleh sejumlah kelompok yang menganjurkan solusi dua negara dalam konflik ini.
Sebuah usul perdamaian saat ini adalah Peta menuju perdamaian yang diajukan oleh Empat Serangkai Uni Eropa, Rusia, PBB dan Amerika Serikat pada 17 September 2002. Israel juga telah menerima peta itu namun dengan 14 "reservasi". Pada saat ini Israel sedang menerapkan sebuah rencana pemisahan diri yang kontroversial yang diajukan oleh Perdana Menteri Ariel Sharon. Menurut rencana yang diajukan kepada AS, Israel menyatakan bahwa ia akan menyingkirkan seluruh "kehadiran sipil dan militer... yang permanen" di Jalur Gaza (yaitu 21 pemukiman Yahudi di sana, dan 4 pemumikan di Tepi Barat), namun akan "mengawasi dan mengawal kantong-kantong eksternal di darat, akan mempertahankan kontrol eksklusif di wilayah udara Gaza, dan akan terus melakukan kegiatan militer di wilayah laut dari Jalur Gaza." Pemerintah Israel berpendapat bahwa "akibatnya, tidak akan ada dasar untuk mengklaim bahwa Jalur Gaza adalah wilayah pendudukan," sementara yang lainnya berpendapat bahwa, apabila pemisahan diri itu terjadi, akibat satu-satunya ialah bahwa Israel "akan diizinkan untuk menyelesaikan tembok [artinya, Penghalang Tepi Barat Israel] dan mempertahankan situasi di Tepi Barat seperti adanya sekarang ini" [1] [2].
Dengan rencana pemisahan diri sepihak, pemerintah Israel menyatakan bahwa rencananya adalah mengizinkan bangsa Palestina untuk membangun sebuah tanah air dengan campur tangan Israel yang minimal, sementara menarik Israel dari situasi yang diyakininya terlalu mahal dan secara strategis tidak layak dipertahankan dalam jangka panjang. Banyak orang Israel, termasuk sejumlah besar anggota partai Likud -- hingga beberapa minggu sebelum 2005 berakhir merupakan partai Sharon -- kuatir bahwa kurangnya kehadiran militer di Jalur Gaza akan mengakibatkan meningkatnya kegiatan penembakan roket ke kota-kota Israel di sekitar Gaza. Secara khusus muncul keprihatinan terhadap kelompok-kelompok militan Palestina seperti Hamas, Jihad Islami atau Front Rakyat Pembebasan Palestina akan muncul dari kevakuman kekuasaan apabila Israel memisahkan diri dari Gaza.

Sejarah

Hingga 1949

2 November 1917. Inggris mencanangkan Deklarasi Balfour, yang dipandang pihak Yahudi dan Arab sebagai janji untuk mendirikan ”tanah air” bagi kaum Yahudi di Palestina.
Revolusi Arab dipimpin Amin Al-Husseini. Tak kurang dari 5.000 warga Arab terbunuh. Sebagian besar oleh Inggris. Ratusan orang Yahudi juga tewas. Husseini terbang ke Irak, kemudian ke wilayah Jerman, yang ketika itu dalam pemerintahan Nazi.
Secara sepihak Israel mengumumkan diri sebagai negara Yahudi. Inggris hengkang dari Palestina. Mesir, Suriah, Irak, Libanon, Yordania, dan Arab Saudi menabuh genderang perang melawan Israel.
3 April 1949. Israel dan Arab bersepakat melakukan gencatan senjata. Israel mendapat kelebihan wilayah 50 persen lebih banyak dari yang diputuskan dalam Rencana Pemisahan PBB.

1949-1967

1967-1993

13 September 1993. Israel dan PLO bersepakat untuk saling mengakui kedaulatan masing-masing. Pada Agustus 1993, Arafat duduk semeja dengan Perdana Menteri Israel Yitzhak Rabin. Hasilnya adalah Kesepakatan Oslo. Rabin bersedia menarik pasukannya dari Tepi Barat dan Jalur Gaza serta memberi Arafat kesempatan menjalankan sebuah lembaga semiotonom yang bisa "memerintah" di kedua wilayah itu. Arafat "mengakui hak Negara Israel untuk eksis secara aman dan damai".
28 September 1995. Implementasi Perjanjian Oslo. Otoritas Palestina segera berdiri.

1993-sekarang

September 1996. Kerusuhan terowongan Al-Aqsa. Israel sengaja membuka terowongan menuju Masjidil Aqsa untuk memikat para turis, yang justru membahayakan fondasi masjid bersejarah itu. Pertempuran berlangsung beberapa hari dan menelan korban jiwa.
  • 18 Januari 1997 Israel bersedia menarik pasukannya dari Hebron, Tepi Barat.
  • Perjanjian Wye River Oktober 1998 berisi penarikan Israel dan dilepaskannya tahanan politik dan kesediaan Palestina untuk menerapkan butir-butir perjanjian Oslo, termasuk soal penjualan senjata ilegal.
  • 19 Mei 1999, Pemimpin partai Buruh Ehud Barak terpilih sebagai perdana menteri. Ia berjanji mempercepat proses perdamaian.
  • Intifada al-Aqsa
Maret 2000, Kunjungan pemimpin oposisi Israel Ariel Sharon ke Masjidil Aqsa memicu kerusuhan. Masjidil Aqsa dianggap sebagai salah satu tempat suci umat Islam. Intifadah gelombang kedua pun dimulai.
  • KTT Camp David 2000 antara Palestina dan Israel
  • Maret-April 2002 Israel membangun Tembok Pertahanan di Tepi Barat dan diiringi rangkaian serangan bunuh diri Palestina.
  • Juli 2004 Mahkamah Internasional menetapkan pembangunan batas pertahanan menyalahi hukum internasional dan Israel harus merobohkannya.
  • 9 Januari 2005 Mahmud Abbas, dari Fatah, terpilih sebagai Presiden Otoritas Palestina. Ia menggantikan Yasser Arafat yang wafat pada 11 November 2004
  • Peta menuju perdamaian
  • Juni 2005 Mahmud Abbas dan Ariel Sharon bertemu di Yerusalem. Abbas mengulur jadwal pemilu karena khawatir Hamas akan menang.
  • Agustus 2005 Israel hengkang dari permukiman Gaza dan empat wilayah permukiman di Tepi Barat.
  • Januari 2006 Hamas memenangkan kursi Dewan Legislatif, menyudahi dominasi Fatah selama 40 tahun.
  • Januari-Juli 2008 Ketegangan meningkat di Gaza. Israel memutus suplai listrik dan gas. Dunia menuding Hamas tak berhasil mengendalikan tindak kekerasan. PM Palestina Ismail Haniyeh berkeras pihaknya tak akan tunduk.
  • November 2008 Hamas batal ikut serta dalam pertemuan unifikasi Palestina yang diadakan di Kairo, Mesir. Serangan roket kecil berjatuhan di wilayah Israel.
  • Serangan Israel ke Gaza dimulai 26 Desember 2008. Israel melancarkan Operasi Oferet Yetsuka, yang dilanjutkan dengan serangan udara ke pusat-pusat operasi Hamas. Korban dari warga sipil berjatuhan. [1]

Organisasi dan angkatan bersenjata

Tokoh

Israel
Palestina
Lainnya

Konflik-konflik terkait

oksigen

Oksigen

8
nitrogenoksigenfluor
-

O

S
O-TableImage.png
Keterangan Umum Unsur
Nama, Lambang, Nomor atom
oksigen, O, 8
Deret kimia
non-logam
Golongan, Periode, Blok
16, 2, p
Penampilan
tak berwarna
O,8.jpg
Massa atom
15,9994(3) g/mol
Konfigurasi elektron
1s2 2s2 2p4
Jumlah elektron tiap kulit
2, 6
Ciri-ciri fisik
Fase
gas
Massa jenis
(0 °C; 101,325 kPa)
1,429 g/L
Titik lebur
54,36 K
(-218,79 °C, -361,82 °F)
Titik didih
90,20 K
(-182,95 °C, -297,31 °F)
Kalor peleburan
(O2) 0,444 kJ/mol
Kalor penguapan
(O2) 6,82 kJ/mol
Kapasitas kalor
(25 °C) (O2)
29,378 J/(mol·K)
Tekanan uap
P/Pa
1
10
100
1 k
10 k
100 k
pada T/K



61
73
90
Ciri-ciri atom
Struktur kristal
kubus
Bilangan oksidasi
2, −1
(oksida netral)
Elektronegativitas
3,44 (skala Pauling)
Energi ionisasi
pertama: 1313,9 kJ/mol
ke-2: 3388,3 kJ/mol
ke-3: 5300,5 kJ/mol
Jari-jari atom
60 pm
Jari-jari atom (terhitung)
48 pm
Jari-jari kovalen
73 pm
Jari-jari Van der Waals
152 pm
Lain-lain
Sifat magnetik
paramagnetik
Konduktivitas termal
(300 K) 26,58 mW/(m·K)
Kecepatan suara
(gas, 27 °C) 330 m/s
Isotop
iso
NA
waktu paruh
DM
DE (MeV)
DP
16O
99,762%
O stabil dengan 8 neutron
17O
0,038%
O stabil dengan 9 neutron
18O
0,2%
O stabil dengan 10 neutron
Referensi
Oksigen atau zat asam adalah unsur kimia dalam sistem tabel periodik yang mempunyai lambang O dan nomor atom 8. Ia merupakan unsur golongan kalkogen dan dapat dengan mudah bereaksi dengan hampir semua unsur lainnya (utamanya menjadi oksida). Pada Temperatur dan tekanan standar, dua atom unsur ini berikatan menjadi dioksigen, yaitu senyawa gas diatomik dengan rumus O2 yang tidak berwarna, tidak berasa, dan tidak berbau. Oksigen merupakan unsur paling melimpah ketiga di alam semesta berdasarkan massa[1] dan unsur paling melimpah di kerak Bumi.[2] Gas oksigen diatomik mengisi 20,9% volume atmosfer bumi..[3]
Semua kelompok molekul struktural yang terdapat pada organisme hidup, seperti protein, karbohidrat, dan lemak, mengandung oksigen. Demikian pula senyawa anorganik yang terdapat pada cangkang, gigi, dan tulang hewan. Oksigen dalam bentuk O2 dihasilkan dari air oleh sianobakteri, ganggang, dan tumbuhan selama fotosintesis, dan digunakan pada respirasi sel oleh hampir semua makhluk hidup. Oksigen beracun bagi organisme anaerob, yang merupakan bentuk kehidupan paling dominan pada masa-masa awal evolusi kehidupan. O2 kemudian mulai berakumulasi pada atomsfer sekitar 2,5 milyar tahun yang lalu.[4] Terdapat pula alotrop oksigen lainnya, yaitu ozon (O3). Lapisan ozon pada atomsfer membantu melindungi biosfer dari radiasi ultraviolet, namun pada permukaan bumi ia adalah polutan yang merupakan produk samping dari asbut.
Oksigen secara terpisah ditemukan oleh Carl Wilhelm Scheele di Uppsala pada tahun 1773 dan Joseph Priestley di Wiltshire pada tahun 1774. Temuan Priestley lebih terkenal oleh karena publikasinya merupakan yang pertama kali dicetak. Istilah oxygen diciptakan oleh Antoine Lavoisier pada tahun 1777,[5] yang eksperimennya dengan oksigen berhasil meruntuhkan teori flogiston pembakaran dan korosi yang terkenal. Oksigen secara industri dihasilkan dengan distilasi bertingkat udara cair, dengan munggunakan zeolit untuk memisahkan karbon dioksida dan nitrogen dari udara, ataupun elektrolisis air, dll. Oksigen digunakan dalam produksi baja, plastik, dan tekstil, ia juga digunakan sebagai propelan roket, untuk terapi oksigen, dan sebagai penyokong kehidupan pada pesawat terbang, kapal selam, penerbangan luar angkasa, dan penyelaman.

Daftar isi


Karakteristik

 Struktur

Pada temperatur dan tekanan standar, oksigen berupa gas tak berwarna dan tak berasa dengan rumus kimia O2, di mana dua atom oksigen secara kimiawi berikatan dengan konfigurasi elektron triplet spin. Ikatan ini memiliki orde ikatan dua dan sering dijelaskan secara sederhana sebagai ikatan ganda[6] ataupun sebagai kombinasi satu ikatan dua elektron dengan dua ikatan tiga elektron.[7]
Oksigen triplet merupakan keadaan dasar molekul O2.[8] Konfigurasi elektron molekul ini memiliki dua elektron tak berpasangan yang menduduki dua orbital molekul yang berdegenerasi.[9] Kedua orbital ini dikelompokkan sebagai antiikat (melemahkan orde ikatan dari tiga menjadi dua), sehingga ikatan oksigen diatomik adalah lebih lemah daripada ikatan rangkap tiga nitrogen.[8]
Dalam bentuk triplet yang normal, molekul O2 bersifat paramagnetik oleh karena spin momen magnetik elektron tak berpasangan molekul tersebut dan energi pertukaran negatif antara molekul O2 yang bersebelahan. Oksigen cair akan tertarik kepada magnet, sedemikiannya pada percobaan laboratorium, jembatan oksigen cair akan terbentuk di antara dua kutub magnet kuat.[10][11]
Oksigen singlet, adalah nama molekul oksigen O2 yang kesemuaan spin elektronnya berpasangan. Ia lebih reaktif terhadap molekul organik pada umumnya. Secara alami, oksigen singlet umumnya dihasilkan dari air selama fotosintesis.[12] Ia juga dihasilkan di troposfer melalui fotolisis ozon oleh sinar berpanjang gelombang pendek,[13] dan oleh sistem kekebalan tubuh sebagai sumber oksigen aktif.[14] Karotenoid pada organisme yang berfotosintesis (kemungkinan juga ada pada hewan) memainkan peran yang penting dalam menyerap oksigen singlet dan mengubahnya menjadi berkeadaan dasar tak tereksitasi sebelum ia menyebabkan kerusakan pada jaringan.[15]


Ozon merupakan gas langka pada bumi yang dapat ditemukan di stratosfer.

Alotrop

Alotrop oksigen elementer yang umumnya ditemukan di bumi adalah dioksigen O2. Ia memiliki panjang ikat 121 pm dan energi ikat 498 kJ·mol-1.[16] Altrop oksigen ini digunakan oleh makhluk hidup dalam respirasi sel dan merupakan komponen utama atmosfer bumi.
Trioksigen (O3), dikenal sebagai ozon, merupakan alotrop oksigen yang sangat reaktif dan dapat merusak jaringan paru-paru.[17] Ozon diproduksi di atmosfer bumi ketika O2 bergabung dengan oksigen atomik yang dihasilkan dari pemisahan O2 oleh radiasi ultraviolet (UV).[5] Oleh karena ozon menyerap gelombang UV dengan sangat kuat, lapisan ozon yang berada di atmosfer berfungsi sebagai perisai radiasi yang melindungi planet.[5] Namun, dekat permukaan bumi, ozon merupakan polutan udara yang dibentuk dari produk sampingan pembakaran otomobil.[18]
Molekul metastabil tetraoksigen (O4) ditemukan pada tahun 2001,[19][20] dan diasumsikan terdapat pada salah satu enam fase oksigen padat. Hal ini dibuktikan pada tahun 2006, dengan menekan O2 sampai dengan 20 GPa, dan ditemukan struktur gerombol rombohedral O8.[21] Gerombol ini berpotensi sebagai oksidator yang lebih kuat daripada O2 maupun O3, dan dapat digunakan dalam bahan bakar roket.[19][20] Fase logam oksigen ditemukan pada tahun 1990 ketika oksigen padat ditekan sampai di atas 96 GPa[22]. Ditemukan pula pada tahun 1998 bahwa pada suhu yang sangat rendah, fase ini menjadi superkonduktor.[23]

 Sifat fisik



Warna oksigen cair adalah biru seperti warna biru langit. Fenomena ini tidak berkaitan; warna biru langit disebabkan oleh penyebaran Rayleigh.
Oksigen lebih larut dalam air daripada nitrogen. Air mengandung sekitar satu molekul O2 untuk setiap dua molekul N2, bandingkan dengan rasio atmosferik yang sekitar 1:4. Kelarutan oksigen dalam air bergantung pada suhu. Pada suhu 0 °C, konsentrasi oksigen dalam air adalah 14,6 mg·L−1, manakala pada suhu 20 °C oksigen yang larut adalah sekitar 7,6 mg·L−1.[24][25] Pada suhu 25 °C dan 1 atm udara, air tawar mengandung 6,04 mililiter (mL) oksigen per liter, manakala dalam air laut mengandung sekitar 4,95 mL per liter.[26] Pada suhu 5 °C, kelarutannya bertambah menjadi 9,0 mL (50% lebih banyak daripada 25 °C) per liter untuk air murni dan 7,2 mL (45% lebih) per liter untuk air laut.
Oksigen mengembun pada 90,20 K (−182,95 °C, −297,31 °F), dan membeku pada 54.36 K (−218,79 °C, −361,82 °F).[27] Baik oksigen cair dan oksigen padat berwarna biru langit. Hal ini dikarenakan oleh penyerapan warna merah. Oksigen cair dengan kadar kemurnian yang tinggi biasanya didapatkan dengan distilasi bertingkat udara cair;[28] Oksigen cair juga dapat dihasilkan dari pengembunan udara, menggunakan nitrogen cair dengan pendingin. Oksigen merupakan zat yang sangat reaktif dan harus dipisahkan dari bahan-bahan yang mudah terbakar.[29]

 Isotop

Oksigen yang dapat ditemukan secara alami adalah 16O, 17O, dan 18O, dengan 16O merupakan yang paling melimpah (99,762%).[30] Isotop oksigen dapat berkisar dari yang bernomor massa 12 sampai dengan 28.[30]
Kebanyakan 16O di disintesis pada akhir proses fusi helium pada bintang, namun ada juga beberapa yang dihasilkan pada proses pembakaran neon.[31] 17O utamanya dihasilkan dari pembakaran hidrogen menjadi helium semasa siklus CNO, membuatnya menjadi isotop yang paling umum pada zona pembakaran hidrogen bintang.[31] Kebanyakan 18O diproduksi ketika 14N (berasal dari pembakaran CNO) menangkap inti 4He, menjadikannya bentuk isotop yang paling umum di zona kaya helium bintang.[31]
Empat belas radioisotop telah berhasil dikarakterisasi, yang paling stabil adalah 15O dengan umur paruh 122,24 detik  dan 14O dengan umur paruh 70,606 detik.[30] Isotop radioaktif sisanya memiliki umur paruh yang lebih pendek daripada 27 detik, dan mayoritas memiliki umur paruh kurang dari 83 milidetik.[30] Modus peluruhan yang paling umum untuk isotop yang lebih ringan dari 16O adalah penangkapan elektron, menghasilkan nitrogen, sedangkan modus peluruhan yang paling umum untuk isotop yang lebih berat daripada 18O adalah peluruhan beta, menghasilkan fluorin.[30]

Keberadaan

Menurut massanya, oksigen merupakan unsur kimia paling melimpah di biosfer, udara, laut, dan tanah bumi. Oksigen merupakan unsur kimia paling melimpah ketiga di alam semesta, setelah hidrogen dan helium.[1] Sekitar 0,9% massa Matahari adalah oksigen.[3] Oksigen mengisi sekitar 49,2% massa kerak bumi[2] dan merupakan komponen utama dalam samudera (88,8% berdasarkan massa).[3] Gas oksigen merupakan komponen paling umum kedua dalam atmosfer bumi, menduduki 21,0% volume dan 23,1% massa (sekitar 1015 ton) atmosfer.[32][3][33] Bumi memiliki ketidaklaziman pada atmosfernya dibandingkan planet-planet lainnya dalam sistem tata surya karena ia memiliki konsentrasi gas oksigen yang tinggi di atmosfernya. Bandingkan dengan Mars yang hanya memiliki 0,1% O2 berdasarkan volume dan Venus yang bahkan memiliki kadar konsentrasi yang lebih rendah. Namun, O2 yang berada di planet-planet selain bumi hanya dihasilkan dari radiasi ultraviolet yang menimpa molekul-molekul beratom oksigen, misalnya karbon dioksida.


Air dingin melarutkan lebih banyak O2.
Konsentrasi gas oksigen di Bumi yang tidak lazim ini merupakan akibat dari siklus oksigen. Siklus biogeokimia ini menjelaskan pergerakan oksigen di dalam dan di antara tiga reservoir utama bumi: atmosfer, biosfer, dan litosfer. Faktor utama yang mendorong siklus oksigen ini adalah fotosintesis. Fotosintesis melepaskan oksigen ke atmosfer, manakala respirasi dan proses pembusukan menghilangkannya dari atmosfer. Dalam keadaan kesetimbangan, laju produksi dan konsumsi oksigen adalah sekitar 1/2000 keseluruhan oksigen yang ada di atmosfer setiap tahunnya.
Oksigen bebas juga terdapat dalam air sebagai larutan. Peningkatan kelarutan O2 pada temperatur yang rendah memiliki implikasi yang besar pada kehidupan laut. Lautan di sekitar kutub bumi dapat menyokong kehidupan laut yang lebih banyak oleh karena kandungan oksigen yang lebih tinggi.[34] Air yang terkena polusi dapat mengurangi jumlah O2 dalam air tersebut. Para ilmuwan menaksir kualitas air dengan mengukur kebutuhan oksigen biologis atau jumlah O2 yang diperlukan untuk mengembalikan konsentrasi oksigen dalam air itu seperti semula.[35]

Peranan biologis

Fotosintesis dan respirasi



Fotosintesis menghasilkan O2
Di alam, oksigen bebas dihasilkan dari fotolisis air selama fotosintesis oksigenik. Ganggang hijau dan sianobakteri di lingkungan lautan menghasilkan sekitar 70% oksigen bebas yang dihasilkan di bumi, sedangkan sisanya dihasilkan oleh tumbuhan daratan.[36]
Persamaan kimia yang sederhana untuk fotosintesis adalah:[37]
6CO2 + 6H2O + foton → C6H12O6 + 6O2
Evolusi oksigen fotolitik terjadi di membran tilakoid organisme dan memerlukan energi empat foton.[38] Terdapat banyak langkah proses yang terlibat, namun hasilnya merupakan pembentukan gradien proton di seluruh permukaan tilakod. Ini digunakan untuk mensintesis ATP via fotofosforilasi.[39] O2 yang dihasilkan sebagai produk sampingan kemudian dilepaskan ke atmosfer.[40]
Dioksigen molekuler, O2, sangatlah penting untuk respirasi sel organisme aerob. Oksigen digunakan di mitokondria untuk membantu menghasilkan adenosina trifosfat (ATP) selama fosforilasi oksidatif. Reaksi respirasi aerob ini secara garis besar merupakan kebalikan dari fotosintesis, secara sederhana:
C6H12O6 + 6O2 → 6CO2 + 6H2O + 2880 kJ·mol-1
Pada vetebrata, O2 berdifusi melalui membran paru-paru dan dibawa oleh sel darah merah. Hemoglobin mengikat O2, mengubah warnanya dari merah kebiruan menjadi merah cerah..[41][17] Terdapat pula hewan lainnya yang menggunakan hemosianin (hewan moluska dan beberapa antropoda) ataupun hemeritrin (laba-laba dan lobster).[32] Satu liter darah dapat melarutkan 200 cc O2.[32]
Spesi oksigen yang reaktif, misalnya ion superoksida (O2) dan hidrogen peroksida (H2O2), adalah produk sampingan penggunaan oksigen dalam tubuh organisme.[32] Namun, bagian sistem kekebalan organisme tingkat tinggi pula menghasilkan peroksida, superoksida, dan oksigen singlet untuk menghancurkan mikroba. Spesi oksigen reaktif juga memainkan peran yang penting pada respon hipersensitif tumbuhan melawan serangan patogen.[39]
Dalam keadaan istirahai, manusia dewasa menghirup 1,8 sampai 2,4 gram oksigen per menit.[42] Jumlah ini setara dengan 6 milyar ton oksigen yang dihirup oleh seluruh manusia per tahun. [43]

Penumpukan oksigen di atmosfer



Peningkatan kadar O2 di atmosfer bumi: 1) tiada O2 yang dihasilkan; 2) O2 dihasilkan, namun diserap samudera dan batuan dasar laut; 3) O2 mulai melepaskan diri dari samuder, namun diserap oleh permukaan tanah dan pembentukan lapisan ozon; 4-5) gas O2 mulai berakumulasi
Gas oksigen bebas hampir tidak terdapat pada atmosfer bumi sebelum munculnya arkaea dan bakteri fotosintetik. Oksigen bebas pertama kali muncul dalam kadar yang signifikan semasa masa Paleoproterozoikum (antara 2,5 sampai dengan 1,6 milyar tahun yang lalu). Pertama-tama, oksigen bersamaan dengan besi yang larut dalam samudera, membentuk formasi pita besi (Banded iron formation). Oksigen mulai melepaskan diri dari samudera 2,7 milyar tahun lalu, dan mencapai 10% kadar sekarang sekitar 1,7 milyar tahun lalu.[44]
Keberadaan oksigen dalam jumlah besar di atmosfer dan samudera kemungkinan membuat kebanyakan organisme anaerob hampir punah semasa bencana oksigen sekitar 2,4 milyar tahun yang lalu. Namun, respirasi sel yang menggunakan O2 mengijinkan organisme aerob untuk memproduksi lebih banyak ATP daripada organisme anaerob, sehingga organisme aerob mendominasi biosfer bumi.[45] Fotosintesis dan respirasi seluler O2 mengijinkan berevolusinya sel eukariota dan akhirnya berevolusi menjadi organisme multisel seperti tumbuhan dan hewan.
Sejak permulaan era Kambrium 540 juta tahun yang lalu, kadar O2 berfluktuasi antara 15% sampai 30% berdasarkan volume.[46] Pada akhir masa Karbon, kadar O2 atmosfer mencapai maksimum dengan 35% berdasarkan volume,[46] mengijinkan serangga dan amfibi tumbuh lebih besar daripada ukuran sekarang. Aktivitas manusia, meliputi pembakaran 7 milyar ton bahan bakar fosil per tahun hanya memiliki pengaruh yang sangat kecil terhadap penurunan kadar oksigen di atmosfer. Dengan laju fotosintesis sekarang ini, diperlukan sekitar 2.000 tahun untuk memproduksi ulang seluruh O2 yang ada di atmosfer sekarang.[47]

Sejarah

Percobaan awal



Percobaan Philo yang menginspirasi para peneliti selanjutnya
Salah satu percobaan pertama yang menginvestigasi hubungan antara pembakaran dengan udara dilakukan oleh seorang penulis Yunani abad ke-2, Philo dari Bizantium. Dalam karyanya Pneumatica, Philo mengamati bahwa dengan membalikkan labu yang di dalamnnya terdapat lilin yang menyala dan kemudian menutup leher labu dengan air akan mengakibatkan permukaan air yang terdapat dalam leher labu tersebut meningkat.[48] Philo menyimpulkan bahwa sebagian udara dalam labu tersebut diubah menjadi unsur api, sehingga dapat melepaskan diri dari labu melalui pori-pori kaca. Beberapa abad kemudian, Leonardo da Vinci merancang eksperimen yang sama dan mengamati bahwa udara dikonsumsi selama pembakaran dan respirasi.[49]
Pada akhir abad ke-17, Robert Boyle membuktikan bahwa udara diperlukan dalam proses pembakaran. Kimiawan Inggris, John Mayow, melengkapi hasil kerja Boyle dengan menunjukkan bahwa hanya sebagian komponen udara yang ia sebut sebagai spiritus nitroaereus atau nitroaereus yang diperlukan dalam pembakaran.[50] Pada satu eksperimen, ia menemukan bahwa dengan memasukkan seekor tikus ataupun sebatang lilin ke dalam wadah penampung yang tertutup oleh permukaan air akan mengakibatkan permukaan air tersebut naik dan menggantikan seperempatbelas volume udara yang hilang.[51] Dari percobaan ini, ia menyimpulkan bahwa nitroaereus digunakan dalam proses respirasi dan pembakaran.
Mayow mengamati bahwa berat antimon akan meningkat ketika dipanaskan. Ia menyimpulkan bahwa nitroaereus haruslah telah bergabung dengan antimon.[50] Ia juga mengira bahwa paru-para memisahkan nitroaereus dari udara dan menghantarkannya ke dalam darah, dan panas tubuh hewan serta pergerakan otot akan mengakibatkan reaksi nitroaereus dengan zat-zat tertentu dalam tubuh.[50] Laporan seperti ini dan pemikiran-pemikiran serta percobaan-percobaan lainnya dipublikasikan pada tahun 1668 dalam karyanya Tractatus duo pada bagian "De respiratione".[51]

Teori flogiston



Stahl membantu mengembangkan dan mempopulerkan teori flogiston.
Dalam percobaan Robert Hooke, Ole Borch, Mikhail Lomonosov, dan Pierre Bayen, percobaan mereka semuanya menghasilkan oksigen, namun tiada satupun dari mereka yang mengenalinya sebagai unsur.[24] Hal ini kemungkinan besar disebabkan oleh prevalensi filosofi pembakaran dan korosi yang dikenal sebagai teori flogiston.
Teori flogiston dikemukakan oleh alkimiawan Jerman, J. J. Becher pada tahun 1667, dan dimodifikasi oleh kimiawan Georg Ernst Stahl pada tahun 1731.[52] Teori flogiston menyatakan bahwa semua bahan yang dapat terbakar terbuat dari dua bagian komponen. Salah satunya adalah flogiston, yang dilepaskan ketika bahan tersebut dibakar, sedangkan bagian yang tersisa setelah terbakar merupakan bentuk asli materi tersebut.[49]
Bahan-bahan yang terbakar dengan hebat dan meninggalkan sedikit residu (misalnya kayu dan batu bara), dianggap memiliki kadar flogiston yang sangat tinggi, sedangkan bahan-bahan yang tidak mudah terbakar dan berkorosi (misalnya besi), mengandung sangat sedikit flogiston. Udara tidak memiliki peranan dalam teori flogiston. Tiada eksperimen kuantitatif yang pernah dilakukan untuk menguji keabsahan teori flogiston ini, melainkan teori ini hanya didasarkan pada pengamatan bahwa ketika sesuatu terbakar, kebanyakan objek tampaknya menjadi lebih ringan dan sepertinya kehilangan sesuatu selama proses pembakaran tersebut.[49] Fakta bahwa materi seperti kayu sebenarnya bertambah berat dalam proses pembakaran tertutup oleh gaya apung yang dimiliki oleh produk pembakaran yang berupa gas tersebut. Sebenarnya pun, fakta bahwa logam akan bertambah berat ketika berkarat menjadi petunjuk awal bahwa teori flogiston tidaklah benar (yang mana menurut teori flogiston, logam tersebut akan menjadi lebih ringan).


Carl Wilhelm Scheele mendahului Priestley dalam penemuan oksigen, namun publikasinya dilakukan setelah Priestley.

Penemuan

Oksigen pertama kali ditemukan oleh seorang ahli obat Carl Wilhelm Scheele. Ia menghasilkan gas oksigen dengan mamanaskan raksa oksida dan berbagai nitrat sekitar tahun 1772.[49][3] Scheele menyebut gas ini 'udara api' karena ia murupakan satu-satunya gas yang diketahui mendukung pembakaran. Ia menuliskan pengamatannya ke dalam sebuah manuskrip yang berjudul Treatise on Air and Fire, yang kemudian ia kirimkan ke penerbitnya pada tahun 1775. Namun, dokumen ini tidak dipublikasikan sampai dengan tahun 1777.[53]


Joseph Priestley biasanya diberikan prioritas dalam penemuan oksigen
Pada saat yang sama, seorang pastor Britania, Joseph Priestley, melakukan percobaan yang memfokuskan cahaya matahari ke raksa oksida (HgO) dalam tabung gelas pada tanggal 1 Augustus 1774. Percobaan ini menghasilkan gas yang ia namakan 'dephlogisticated air'.[3] Ia mencatat bahwa lilin akan menyala lebih terang di dalam gas tersebut dan seekor tikus akan menjadi lebih aktif dan hidup lebih lama ketika menghirup udara tersebut. Setelah mencoba menghirup gas itu sendiri, ia menulis: "The feeling of it to my lungs was not sensibly different from that of common air, but I fancied that my breast felt peculiarly light and easy for some time afterwards."[24] Priestley mempublikasikan penemuannya pada tahun 1775 dalam sebuah laporan yang berjudul "An Account of Further Discoveries in Air". Laporan ini pula dimasukkan ke dalam jilid kedua bukunya yang berjudul Experiments and Observations on Different Kinds of Air.[54][49] Oleh karena ia mempublikasikan penemuannya terlebih dahulu, Priestley biasanya diberikan prioritas terlebih dahulu dalam penemuan oksigen.
Seorang kimiawan Perancis, Antoine Laurent Lavoisier kemudian mengklaim bahwa ia telah menemukan zat baru secara independen. Namun, Priestley mengunjungi Lavoisier pada Oktober 1774 dan memberitahukan Lavoisier mengenai eksperimennya serta bagaimana ia menghasilkan gas baru tersebut. Scheele juga mengirimkan sebuah surat kepada Lavoisier pada 30 September 1774 yang menjelaskan penemuannya mengenai zat yang tak diketahui, tetapi Lavoisier tidak pernah mengakui menerima surat tersebut (sebuah kopian surat ini ditemukan dalam barang-barang pribadi Scheele setelah kematiannya).[53]

Kontribusi Lavoisier

Apa yang Lavoisier tidak terbantahkan pernah lakukan (walaupun pada saat itu dipertentangkan) adalah percobaan kuantitatif pertama mengenai oksidasi yang mengantarkannya kepada penjelasan bagaimana proses pembakaran bekerja.[3] Ia menggunakan percobaan ini beserta percobaan yang mirip lainnya untuk meruntuhkan teori flogiston dan membuktikan bahwa zat yang ditemukan oleh Priestley dan Scheele adalah unsur kimia.


Antoine Lavoisier mendiskreditkan teori flogiston
Pada satu eksperimen, Lavoisier mengamati bahwa tidak terdapat keseluruhan peningkatan berat ketika timah dan udara dipanaskan di dalam wadah tertutup.[3] Ia mencatat bahwa udara segera masuk ke dalam wadah seketika ia membuka wadah tersebut. Hal ini mengindikasikan bahwa sebagian udara yang berada dalam wadah tersebut telah dikonsumsi. Ia juga mencatat bahwa berat timah tersebut juga telah meningkat dan jumlah peningkatan ini adalah sama beratnya dengan udara yang masuk ke dalam wadah tersebut. Percobaan ini beserta percobaan mengenai pembakaran lainnya didokumentasikan ke dalam bukunya Sur la combustion en général yang dipublikasikan pada tahun 1777.[3] Hasil kerjanya membuktikan bahwa udara merupakan campuran dua gas, 'udara vital', yang diperlukan dalam pembakaran dan respirasi, serta azote (Bahasa Yunani ἄζωτον "tak bernyawa"), yang tidak mendukung pembakaran maupun respirasi. Azote kemudian menjadi apa yang dinamakan sebagai nitrogen, walaupun dalam Bahasa Perancis dan beberapa bahasa Eropa lainnya masih menggunakan nama Azote.[3]
Lavoisier menamai ulang 'udara vital' tersebut menjadi oxygène pada tahun 1777. Nama tersebut berasal dari akar kata Yunani ὀξύς (oxys) (asam, secara harfiah "tajam") dan -γενής (-genēs) (penghasil, secara harfiah penghasil keturunan). Ia menamainya demikian karena ia percaya bahwa oksigen merupakan komponen dari semua asam.[5] Ini tidaklah benar, namun pada saat para kimiawan menemukan kesalahan ini, nama oxygène telah digunakan secara luas dan sudah terlambat untuk menggantinya. Sebenarnya gas yang lebih tepat untuk disebut sebagai "penghasil asam" adalah hidrogen.
Oxygène kemudian diserap menjadi oxygen dalam bahasa Inggris walaupun terdapat penentangan dari ilmuwan-ilmuwan Inggris dikarenakan bahwa adalah seorang Inggris, Priestley, yang pertama kali mengisolasi serta menuliskan keterangan mengenai gas ini. Penyerapan ini secara sebagian didorong oleh sebuah puisi berjudul "Oxygen" yang memuji gas ini dalam sebuah buku populer The Botanic Garden (1791) oleh Erasmus Darwin, kakek Charles Darwin.[53]

Sejarah selanjutnya



Robert H. Goddard dengan roket berbahan bakar campuran bensin dan oksigen cair rancangannya
Hipotesis atom awal John Dalton berasumsi bahwa semua unsur berupa monoatomik dan atom-atom dalam suatu senyawa akan memiliki rasio atom paling sederhana terhadap satu sama lainnya. Sebagai contoh, Dalton berasumsi bahwa rumus air adalah HO, sehingga massa atom oksigen adalah 8 kali massa hidrogen (nilai yang sebenarnya adalah 16).[55] Pada tahun 1805, Joseph Louis Gay-Lussac dan Alexander von Humboldt menunjukkan bahwa air terbentuk dari dua volume hidrogen dengan satu volume oksigen; dan pada tahun 1811, berdasarkan apa yang sekarang disebut hukum Avogadro dan asumsi molekul unsur diatomik, Amedeo Avogadro memperkirakan komposisi air dengan benar.[56][57]
Pada akhir abad ke-19, para ilmuwan menyadari bahwa udara dapat dicairkan dan komponen-komponennya dapat dipisahkan dengan mengkompres dan mendinginkannya. Kimiawan dan fisikawan Swiss, Raoul Pierre Pictet, menguapkan cairan sulfur dioksida untuk mencairkan karbon dioksida, yang mana pada akhirnya diuapkan untuk mendinginkan gas oksigen menjadi cairan. Ia mengirim sebuah telegram pada 22 Desember 1877 kepada Akademi Sains Prancis di Paris dan mengumumkan penemuan oksigen cairnya.[58] Dua hari kemudian, fisikawan Perancis Louis Paul Cailletet mengumumkan metodenya untuk mencairkan oksigen molekuler.[58] Hanya beberapa tetes cairan yang dihasilkan sehingga tidak ada analisis berarti yang dapat dilaksanakan. Oksigen berhasil dicairkan ke dalam keadaan stabil untuk pertama kalinya pada 29 Maret 1877 oleh ilmuwan Polandia dari Universitas Jagiellonian, Zygmunt Wróblewski dan Karol Olszewski.[59]
Pada tahun 1891, kimiawan Skotlandia James Dewar berhasil memproduksi oksigen cair dalam jumlah yang cukup banyak untuk dipelajari.[60] Proses produksi oksigen cair secara komersial dikembangkan secara terpisah pada tahun 1895 oleh insinyur Jerman Carl von Linde dan insinyur Britania William Hampson. Kedua insinyur tersebut menurunkan suhu udara sampai ia mencair dan kemudian mendistilasi udara cair tersebut.[61] Pada tahun 1901, pengelasan oksiasetilena didemonstrasikan untuk pertama kalinya dengan membakar campuran asetilena dan O2 yang dimampatkan. Metode pengelasan dan pemotongan logam ini pada akhirnya digunakan secara meluas.[61]
Pada tahun 1923, ilmuwan Amerika Robert H. Goddard menjadi orang pertama yang mengembangkan mesin roket; mesin ini menggunakan bensin sebagai bahan bakar dan oksigen cair sebagai oksidator. Goddard berhasil menerbangkan roket kecil sejauh 56 m dengan kecepatan 97 km/jam pada 16 Maret 1926 di Auburn, Massachusetts, USA.[61][62]

Senyawa oksigen



Air (H2O) adalah senyawa oksigen yang paling dikenal.
Keadaan oksidasi okesigen adalah -2 untuk hampir semua senyawa oksigen yang diketahui. Keadaan oksidasi -1 ditemukan pada beberapa senyawa seperti peroksida.[63] Senyawa oksigen dengan keadaan oksidasi lainnya sangat jarang ditemukan, yakni -1/2 (superoksida), -1/3 (ozonida), 0 (asam hipofluorit), +1/2 (dioksigenil), +1 (dioksigen difluorida), dan +2 (oksigen difluorida).

Senyawa oksida dan senyawa anorganik lainnya

Air (H2O) adalah oksida hidrogen dan merupakan senyawa oksigen yang paling dikenal. Atom hidrogen secara kovalen berikatan dengan oksigen. Selain itu, atom hidrogen juga berinteraksi dengan atom oksigen dari molekul air lainnya (sekitar 23,3 kJ·mol−1 per atom hidrogen).[64] Ikatan hidrogen antar molekul air ini menjaga kedua molekul 15% lebih dekat daripada yang diperkirakan apabila hanya memperhitungkan gaya Van der Waals.[65][66]


Senyawa oksida seperti besi oksida atau karat terbentuk ketika oksigen bereaksi dengan unsur lainnya.
Oleh karena elektronegativitasnya, oksigen akan membentuk ikatan kimia dengan hampir semua unsur lainnya pada suhu tinggi dan menghasilkan senyawa oksida. Namun, terdapat pula beberapa unsur yang secara spontan akan membentuk oksida pada suhu dan tekanan standar. Perkaratan besi merupakan salah satu contohnya. Permukaan logam seperti aluminium dan titanium teroksidasi dengan keberadaan udara dan membuat permukaan logam tersebut tertutupi oleh lapisan tipis oksida. Lapisan oksida ini akan mencegah korosi lebih lanjut. Beberapa senyawa oksida logam transisi ditemukan secara alami sebagai senyawa non-stoikiometris. Sebagai contohnya, FeO (wustit) sebenarnya berumus Fe1 − xO, dengan x biasanya sekitar 0,05.[67]
Di atmosfer pula, kita dapat menemukan sejumlah kecil oksida karbon, yaitu karbon dioksida (CO2). Pada kerak bumi pula dapat ditemukan berbagai senyawa oksida, yakni oksida silikon (Silika SO2) yang ditemukan pada granit dan pasir, oksida aluminium (aluminium oksida Al2O3 yang ditemukan pada bauksit dan korundum), dan oksida besi (besi(III) oksida Fe2O3) yang ditemukan pada hematit dan karat logam.